
Decentralized Finance and the Future of
Money

Exercise 1: Smart Contracts

Luca Brilhaus

This report was written as a graded semester performance for the course ”Decentralized

Finance and the Future of Money”, lectured by Prof. Dr. Hans Gersbach, Prof. Dr. Roger

Wattenhofer and Dr. Bastian J. Bergmann

Spring semester 2023

ETH Zurich

Task 1

(4 points) Write an ERC20 token contract for your own token and include one

additional functionality of your choice (e.g., a function which lets the token

holder with the most tokens change the token name). Deploy the token and

add its information to the shared drive (include the token code and address in

your report).

For the sake of transparency, all transactions performed were executed using the

EOA:

0x6b604a2A8134EBf49a6e90e946404145904BF858

In memory of my dog Anton, I created the ERC20 token Anton. Anton was born on

July 21, 2004; hence, there is a total supply of 21’072’004 coins, and each coin has

three decimals. Since Anton was a very good dog (like all other dogs), there should

be a way of telling him (you can never tell them often enough). That is why I added

the function sayGoodBoy(), telling Anton that he is a good boy. Anton can be found

under the contract account address

0x5b67efeA0222aE80bf8263dA7114008112D79c34

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.18;

import "./interfaces/IERC20.sol";

import "./libraries/SafeMath.sol";

contract AntonCoin is IERC20 {

using SafeMath for uint256;

uint256 public constant _totalSupply = 21072004*10**3;

string public constant name = ’Anton’;

uint8 public constant decimals = 3;

string public constant symbol = ’ANTON’;

mapping (address => uint256) private _balances;

mapping (address => mapping (address => uint256)) private _allowed;

1

constructor () {

_balances[msg.sender] = _totalSupply;

emit Transfer(address(0), msg.sender , _totalSupply);

}

function totalSupply() external override pure returns (uint256) {

return _totalSupply;

}

function balanceOf(address owner) public override view returns (uint256)

{

return _balances[owner];

}

/**

* Function to check the amount of tokens that an owner allowed to a

spender.

*/

function allowance(address owner,address spender)public override view

returns (uint256){

return _allowed[owner][spender];

}

function transfer(address to, uint256 value) public override returns

(bool) {

require(value <= _balances[msg.sender]);

require(to != address(0));

_balances[msg.sender] = _balances[msg.sender].sub(value);

_balances[to] = _balances[to].add(value);

emit Transfer(msg.sender, to, value);

return true;

}

function approve(address spender, uint256 value) public override returns

(bool) {

require(spender != address(0));

_allowed[msg.sender][spender] = value;

emit Approval(msg.sender, spender, value);

return true;

2

}

function _transfer(address from, address to, uint value) private {

_balances[from] = _balances[from].sub(value);

_balances[to] = _balances[to].add(value);

emit Transfer(from, to, value);

}

function transferFrom(address from, address to, uint256 value) public

override returns (bool){

require(value <= _balances[from]);

require(value <= _allowed[from][msg.sender]);

require(to != address(0));

_allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value);

_transfer(from, to, value);

return true;

}

function increaseAllowance(address spender, uint256 addedValue) public

returns (bool){

require(spender != address(0));

_allowed[msg.sender][spender] = (

_allowed[msg.sender][spender].add(addedValue));

emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);

return true;

}

function decreaseAllowance(address spender,uint256 subtractedValue)

public returns (bool){

require(spender != address(0));

_allowed[msg.sender][spender] = (

_allowed[msg.sender][spender].sub(subtractedValue));

emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);

return true;

}

function sayGoodBoy() public pure returns (string memory){

return "You’re a good boy!";

3

}

}

Solidity code for the ERC20 token ANTON

Task 2

(3 points) Add liquidity to a pair with your token (adding liquidity using the

router will create the pair if it does not exist, you can also create the pair

separately using the factory contract). In order to add liquidity or do any

trades, you need to first give permission for the router to make trades on your

behalf by calling the allow function of the token(s) smart contract.

In order to add liquidity to the ANTON-WETH pool, I allowed the factory and

router to spend ANTON and WETH using their ERC20 approve function. For sim-

plicity, I allowed both to spend the maximum amount of available ANTON andWETH

in my Metamask wallet. The pool was created using the addLiquidity function of the

router. I instantiated the pool with 21.070 ANTON and 5.20852107 ∗ 10−10 WETH.

The pool address is:

0x563b2008674cE273aAB1d4D0508B2365bF2e3B55

4

Task 3

(3 points) Trade your token for 30 Defi tokens and add 20 Defi tokens to a

pool with your token and the DEFI token. At the end of the project, your

account should have at least 10 Defi tokens in its balance. Include in the report

what token you traded to get the DEFI tokens, and how much.

In total, I needed three trades to trade 247.485 ANTON for 30 DEFI tokens. The

first trade exploited an arbitrage opportunity between the DEFI-MOON, MOON-

SUN and SUN-DEFI liquidity pools. This allowed me to trade 79.863 ANTON for 10

DEFI using the following path:

[”0x5b67efeA0222aE80bf8263dA7114008112D79c34”,

”0x2362e2981E60aab56b6287aB814da1716D2f4f6d”,

”0xDeD39E717E29f2f7d1C9Ac73B9BB067fC202B2B4”,

”0xD2fa1d3F21c1fD363ABbB1bd828106909A911f60”,

”0xCe126A100eDA0226405ee904eeF4F78f8afd7547”,

”0xDeD39E717E29f2f7d1C9Ac73B9BB067fC202B2B4”]

(a) Calculating first swap (b) Executing the first swap

For the second and third trades, I used the WETH-DEFI pool. But first, I had

to add some liquidity to the ANTON-WETH pool to ensure that I could swap a

sufficiently large amount of WETH to obtain 15 DEFI. After adding liquidity using

the router contract, I calculated the amount of ANTON I have to spend to obtain 15

5

DEFI using the getAmountsIn function. I traded 11.346 ANTON for 15 DEFI using

the following path:

[”0x5b67efeA0222aE80bf8263dA7114008112D79c34”,

”0x2362e2981E60aab56b6287aB814da1716D2f4f6d”,

”0xDeD39E717E29f2f7d1C9Ac73B9BB067fC202B2B4”]

(a) Calculating second swap (b) Executing the second swap

For my last trade, I repeated everything from the second trade, using the same

path, and obtained 5 DEFI for 156.276 ANTON.

(a) Calculating third swap (b) Executing the third swap

After successfully trading my token for DEFI, I created the ANTON-DEFI pool

which can be found at the following address:

0xe9e0abb7F63cfec9Ebc029ABE88eFF5f61D5D7F7

6

Figure 4: Generating ANTON-DEFI liquidity pool

The pool was instantiated such that 20 DEFI equals 20 ANTON.

Task 4

Write a smart contract with the following functions:

a) (5 points) A view function to get the pool balances of a pair of tokens in

our DEX.

b) (5 points) A function which takes as input (address A, address B, address

C, uint256 valA, uint256 valC) which performs a swap of valA of token

A to token C using an intermediary token B (i.e., swaps A for B, then

B for C) only if the resulting swap ends with at most valC amount of

token C (this swap shoulfd be atomic: if the condition on valC is not met,

all swaps should be voided). Your contract can either make use of the

Router contract to perform the swap or itself perform the functionality of

the swap. In the report, briefly describe how you implemented the function

and what steps a user must take to call the function (e.g., who the user

needs to approve what token).

The smart contract fulfilling both tasks can be found at the following address:

7

0x6E1D2f5651C73cE574A4804b6241d77f63699d75

Both functions will repeatedly use the factory address, the router address, and an

invalid pair address. Therefore, they were initialized in advance.

a) The getPoolBalance function requests the user to input the addresses of the

two tokens in the pool. The pool address is obtained by calling the factory’s

getPair function. In the next step, the smart contract verifies the existence

of the requested pool balance. In the event of inexistence, the smart contract

terminates and returns an error message ”Invalid trading pair”. If the pool

exists on our DEX, the amount of tokens held by the pool is queried using the

getBalanceOf function of the ERC20 tokens. Finally, the reserves are returned.

Instead of calling the balanceOf function of each token, one could also interact

with the pair directly using the IPair interface. This can be done as follows:

import ’./interfaces/IPair.sol’;

contract SmartContract{

function getPoolBalance(address token0, address token1) public

view returns(uint256 reserve0, uint256 reserve1){

address factory = 0x36C859726f1D72EBC32cA61B7Dc6A3092b416b66;

address pairAddress =

IUniswapV2Factory(factory).getPair(token0, token1);

require(pairAddress != invalidPair, ’Invalid trading pair’);

(reserve0, reserve1,) =

IUniswapV2Pair(pairAddress).getReserves();

}

}

Alternative code for the getPoolBalance function

b) The function performing the swap is called AtomicSwap. I wrote AtomicSwap

in such a way, that the sender only has to allow SmartContract.sol to spend

valA of token A from his balance. This requires that the factory and the router

have permission to spend valA of token A held by the smart contract. In a

similar manner to a), AtomicSwap checks whether the requested trading triple

8

exist, i.e. whether the pairs A-B and B-C exist. If one does not exist, the func-

tion terminates. Afterwards AtomicSwap verifies that the sender has sufficient

balance of token A to perform the swap. In the next step, AtomicSwap vali-

dates whether the obtained amount of token C exceeds the limit given by valC.

Now, AtomicSwap verifies that it has the allowance to spend valA of token A

from the balance of the sender. Then, valA of token A is send to the address

of the smart contract. Since no smart contract can spend more tokens than it

owns, it allows the router and factory to spend valA after receiving valA from

the sender. After all these preparations, the swap can finally happen. To avoid

possible front-running attacks, I implemented a fall-back option, checking that

the amount of token C received after the swap is at most valC. If an attack oc-

curs (possible due to the large timestamp), the entire transaction is terminated

and only the gas fee has to be paid, truly resulting in an atomic swap.

pragma solidity >=0.8.18;

/**

* @title SmartContract

* @author Luca Brilhaus

* @notice Get pool balances and implement atomic triple swap

*/

import ’./interfaces/IERC20.sol’;

import ’./interfaces/IFactory.sol’;

import ’./interfaces/IRouter.sol’;

contract SmartContract{

address invalidPair = 0x00;

address factory = 0x36C859726f1D72EBC32cA61B7Dc6A3092b416b66;

address router = 0x3141e4602Fd9B3b08029816D0C09ab177Fdc9dFA;

// A view function to get the pool balances of a pair of tokens in our

DEX.

function getPoolBalance(address token0, address token1) public view

returns(uint256 reserve0, uint256 reserve1){

// get Address of liquidity pool

address pairAddress = IUniswapV2Factory(factory).getPair(token0,

9

token1);

require(pairAddress != invalidPair, ’Invalid trading pair’);

reserve0 = IERC20(token0).balanceOf(pairAddress);

reserve1 = IERC20(token1).balanceOf(pairAddress);

}

function AtomicSwap(address A, address B, address C, uint256 valA,

uint256 valC) public{

// Path for swapping

address[] memory path = new address[](3);

path[0] = A;

path[1] = B;

path[2] = C;

// Trading pairs must exist

address pairAddress1 = IUniswapV2Factory(factory).getPair(A, B);

address pairAddress2 = IUniswapV2Factory(factory).getPair(B, C);

require(pairAddress1 != invalidPair, ’Pair does not exist’);

require(pairAddress2 != invalidPair, ’Pair does not exist’);

// Holder has sufficient balance

require(IERC20(A).balanceOf(msg.sender)>=valA, ’Insufficient

balance’);

// Swap results in more than valC

require(IUniswapV2Router01(router).getAmountsOut(valA,

path)[path.length-1]<=valC, ’Swap results in more than valC’);

// Check if contract is allowed to spend valA from msg.sender

require(IERC20(A).allowance(msg.sender, address(this))>=valA,

’Contract not allowed to spend valA’);

// Transfer funds to contract address

IERC20(A).transferFrom(msg.sender, address(this), valA);

// Approve factory and router to perform swaps

IERC20(A).approve(factory, valA);

IERC20(A).approve(router, valA);

// Time stated for Swap to be executed

uint timelock = block.timestamp + 100000;

// Perform swap

10

uint[] memory amounts =

IUniswapV2Router01(router).swapExactTokensForTokens(valA, 0,

path, msg.sender, timelock);

// Swap results in at most valC

require(amounts[path.length-1] <= valC, ’Swap results in more than

valC’);

}

}

Solidity code for SmartContract.sol

11

