Übungsstunde 10

Dienstag, 29. November 2022

16:33

Es gilt NPCLR SARE.

Um ENP reicht es eine NTM anzugeben, welche in polynomieller Laufzeit das Problem löst.

Def.: Sei $C = (L_1 v ... v L_K)$ eine Klausel über Variablen von X. C ist monoton, wenn $\{L_1, ..., L_K\} \subseteq X$ Time KNF heisst monoton, wenn alle Klauseln monoton sind.

Beh .: MONOSAT = { \P \in SAT | \P monoton } ist NP - vollständig

Beneis: EUP Klar, da SATEUP

Z: SAT ≤ p MonoSAT

Sei $F = C_1 \times ... \times C_m$ eine KNF über $X = \{X_1, ..., X_n\}$, wobei $C_1 = L_{i_1} \vee ... \vee L_{i_k}$ mit $L_{i_1} \in X \cup X$. Wir konstruieren Φ aus F.

TRICK: (X, v y,) x (X, v y,) <=> X, XOR y, positiv/negativ. "Alibi-Monotonität"

Sei $Y = \{y_1, ..., y_i\}$ neue Variablen ($Y \cap X = \varnothing$). Wir ersetzen \overline{X} ; mit y_i und Fügen Y: (X_i , v,) \wedge (\overline{X} , $v\overline{y}$;) zusätzlich ein.

Die Konstruktion ist sicherlich in poly. LZ möglich.

Beh :: FESAT <=> \$\overline{\Pi} \in MonoSAT

Beueis.

- "=>" Sei \propto eine exfüllende Belegung für F. Dann ist $B(x_i) = \alpha(x_i)$ und $B(y_i) = 1 \alpha(x_i)$ "= \overline{x}_i ." $\forall i$ eine exfüllende Belegung für $\overline{\Phi}$.

 Da $\overline{\Phi}$ klar monoton ist, gilt $\overline{\Phi} \in MonosAT$
- "=" Sei B erfüllend für Φ. Für jedes i ist (x; vy;) \(\overline{x}; v\overline{y};\) erfüllt gdw.

 duch B

 B(x;) = 1 B(y;). Definiere α(x;):= P(x;). Da in Φ jede Klausel Yerfüllt wird,

 wird die entsprechende Klausel in F mit X; Statt y; durch α erfüllt.[]

Beh.: Vertex Cover ist NP vollständig.

Beveis: Angenommen Independent Set ist UP complete, Indist = ist in einem ungerichteten Graphen G = (V, E) ein kantenloser Teilgraph, also $V' \subseteq V$, s.c. $\forall v, w \in V' : \{v, w\} \notin E$.

Independent Set = $\{(G, K) \mid G \text{ hat ein Ind. Set der Größe } \neq k\}$ (Komplement zu VC)

• Vertex Cover \in UP: Sei (G, K) eine Eingabe, welche in Vertex Cover liegt. Dann gibt es K'Knoten V' in G_{ij} welche ein Vertex Cover bilden. Klar: $|V'| \leq |G|$. Gregeben V', so

Können wir alle Kanten in G. durchlaufen und prüfen, ob jede davon min. einen Endpunkt
in V' hat. Dies hat Laufzeit IEI·IV'I, was polynomiell in IGI ist.
 Independent Set ≤_P Vertex Cover
Sei (G, k) eine Eingabe für Independent Set. Dann ist (G', k') eine Eingabe
für Vertex Cover, wobei G'=G und k'=n-k. (n=1V1)
Beh.: $(G,k) \in Independent Set (G',k') \in VertexGver$
Beweis: "=>" G hat ein Ind. Set S, ISI=k. Dann ist V=VIS ein VC, da keine Kante in G
beide Eckpunkte in S haben kann
G' hat ein VC V'. IV'I=n-k. Dann gibt es keine Kante in V\V'=:S, ISI=K
Do die Konstruktion in poly. LZ möglich ist, folgt die Behauptung.
Beh.: Sei
Undirected Hamilton Cycle = { G = (V, E) Gibt es einen Kreis, der jeden Knoten in G genau
UHC gerichteter Graph einmal besucht ? }
Directed Hamilton Cycle = $\{\hat{D} = (v, A)\}$ " gerichteten Kreis. " $\{\hat{D} \in D \in D \in A\}$
Dann ist UHC = DHC
Beveis: Sei G eine Eingabe für UHC. Wir konstruieren G' wie folgt:
V(G') = V(G). Für jede Kante {v,w} ∈ E(G) fügen wir die gerichteten Kanten
(v,w) and (w,v) in $A=E(G')$ ein. Die Konstruktion ist sicher in poly. LZ in 1G1
möglich.
"=>" Angenommen (u1,,un) ist ein UHC in G1. So ist dies auch ein DHC.
"Z=" Jeder DHC ist auch ein UHC. LI L
Song-Empfehlungen:
Hear the sound - Franck Heute Nadit - Moddix
· So Druft - KNTRLVRLST
F3SAT = Alle VIIE mit nonny droi l'tambon marquisa internaliadiatar Variables
· E3SAT = Alle KUF mit genou drei Literalen paarweise unterschiedlicher Variablen
pro Klausel

Beh: 3SAT € E3SAT Beueis: Sei & eine Eingabe für 3 SAT, also Ø=C, 1... 10m über X= {x1,..., x1}. O.B.d.A. enthält jede Klausel von ϕ jede Variable höchstens einmal. Konstruiere 4 vie folgt: Alle Klauseln von Ø, die Gereits 3 Variablen enthalten, bleiben unverändert. 🕧 2) Falls C:=(L:,,vL:,2), ersetze sie duch C:,,=(L:,,vL:,2 v y;) und C:,2 = (L:,,vL:,2 v y;) wobei y, eine neue Variable ist, die sonst ningends in 14 vorkommt. (3) Falls C; = L; => Ci,1 = (L; VY;,1VY;,2), C;,2 = (L; VY;,1V\overline{7},1V\ove Ci,4 = (Li v \(\overline{\cappa_{i,1}} \verline{\cappa_{i,2}}\)), Wobei \(\cappa_{i,1}\) and \(\cappa_{i,2}\) Zwei neue Variablen sind, die sonst nirgends in 4 vorkommen Offenbar ist diese Konstruktion in poly. Zeit durchführbar und die ZSTBED. von E3SAT gelten. Beh: ϕ exfulbar \iff \land exfulbar Baueis: "=>" Sei « eine erfüllende Belegung für Ø Dann setzt « mindestens ein Literal in jeder der Klauseln C1,..., Cm auf 1. Damit ist aber auch 4 exfillt für eine beliebige Erweiterung von a "≤" Sei B eine erfüllende Belegung von 4. Dann werden alle Klauseln in 4 von B erfüllt. Wir zeigen: B/x efüll+ Ø. Falls wir in Ø sind, so erfüllt B diese sicherlich. Falls wir in 3 sind, so kann 3 nur erfüllt Sein, wenn C; erfüllt wird (wegen Ci.4). Also efull B auch C: Falls wir in @ sind, so muss such C. von B exfillt werden, da y und y vorkommen Somit effillt is also alle Klauseln von O